3,736 research outputs found

    The Groverian Measure of Entanglement for Mixed States

    Full text link
    The Groverian entanglement measure introduced earlier for pure quantum states [O. Biham, M.A. Nielsen and T. Osborne, Phys. Rev. A 65, 062312 (2002)] is generalized to the case of mixed states, in a way that maintains its operational interpretation. The Groverian measure of a mixed state of n qubits is obtained by a purification procedure into a pure state of 2n qubits, followed by an optimization process based on Uhlmann's theorem, before the resulting state is fed into Grover's search algorithm. The Groverian measure, expressed in terms of the maximal success probability of the algorithm, provides an operational measure of entanglement of both pure and mixed quantum states of multiple qubits. These results may provide further insight into the role of entanglement in making quantum algorithms powerful.Comment: 6 pages, 2 figure

    ZnJ2 Is a Member of a Large Chaperone Family in the Chloroplast of Photosynthetic Organisms that Features a DnaJ-Like Zn-Finger Domain.

    Get PDF
    Photosynthesis is performed by large complexes, composed of subunits encoded by the nuclear and chloroplast genomes. Assembly is assisted by general and target-specific chaperones, but their mode of action is yet unclear. We formerly showed that ZnJ2 is an algal chaperone resembling BSD2 from land plants. In algae, it co-migrates with the rbcL transcript on chloroplast polysomes, suggesting it contributes to the de-novo synthesis of RbcL (Doron et al., 2014). ZnJ2 contains four CXXCXGXG motifs, comprising a canonical domain typical also of DnaJ-type I (DNAJA). It contributes to the binding of protein substrates to DnaK and promotes an independent oxidoreductase activity (Mattoo et al., 2014). To examine whether ZnJ2 has oxidoreductase activity, we used the RNaseA assay, which measures the oxidation-dependent reactivation of reduced-denatured RNaseA. Although ZnJ2 assisted the native refolding of reduced-denatured RNaseA, its activity was restricted to an oxidizing environment. Thus, ZnJ2 did not carry the exclusive responsibility for the formation of disulfide bridges, but contributed to the stabilization of its target polypeptides, until they reached their native state. A ZnJ2 cysteine deficient mutant maintained a similar holding chaperone activity as the wild-type and did not induce the formation of disulfide bonds. ZnJ2 is devoid of a J-domain. It thus does not belong to the J-domain co-chaperones that target protein substrates to DnaK. As expected, in vitro, its aggregation-prevention activity was not synergic to the ATP-fueled action of DnaK/DnaJ/GrpE in assisting the native refolding of denatured malate dehydrogenase, nor did it show an independent refolding activity. A phylogenetic analysis showed that ZnJ2 and BSD2 from land plants, are two different proteins belonging to a larger group containing a cysteine-rich domain, that also includes the DNAJAs. Members of this family are apparently involved in specific assembly of photosynthetic complexes in the chloroplast

    Characterization of pure quantum states of multiple qubits using the Groverian entanglement measure

    Full text link
    The Groverian entanglement measure, G(psi), is applied to characterize a variety of pure quantum states |psi> of multiple qubits. The Groverian measure is calculated analytically for certain states of high symmetry, while for arbitrary states it is evaluated using a numerical procedure. In particular, it is calculated for the class of Greenberger-Horne-Zeilinger states, the W states as well as for random pure states of n qubits. The entanglement generated by Grover's algorithm is evaluated by calculating G(psi) for the intermediate states that are obtained after t Grover iterations, for various initial states and for different sets of the marked states.Comment: 28 pages, 5 figure

    Estimation of Site Effects in the Israel Seacoast Area by Ambient Noise Records for Microzonation

    Get PDF
    Owing to the proximity to seismically active faults as well as the population density in the band of Israel Seacoast between the towns of Ashqelon and Haifa, this region may be considered a high seismic risk zone. For quantitative assessment of seismic response in terms of horizontal-to-vertical (H/V) spectral ratios the ambient noise survey was carried out at 190 sites. Results derived from H/V analysis indicate site amplifications ranging from 1 to 8 within the frequency band 1.0-6.0 Hz. The soil profiles at the investigated sites were very different. Some sites have simple profiles in the uppermost surface layer and clear seismic impedance between the soft soil layer and the bedrock. Other sites had complicated surface soil layers and a less distinct contrast between the surface soil and underlying bedrock. In many cases our attempts to estimate depth to the hardrock reflector from borehole data failed. Only when the distribution maps of the predominant frequency and the distribution of maximum amplification were constructed was the strong correlation between geological features and measurement results revealed. The observed resonance frequencies and their amplifications were correlated with analytical functions that correspond to the 1-D subsurface model. Collection of available geological, geotechnical and geophysical data relevant to local geology and combination of the theoretical and experimental response functions provided reliable estimations of analytical site effects

    Reduction of Soil-Borne Plant Pathogens Using Lime and Ammonia Evolved from Broiler Litter

    Get PDF
    In laboratory and micro-plots simulations and in a commercial greenhouse, soil ammonia (NH3) and pH were manipulated as means to control soil-borne fungal pathogens and nematodes. Soil ammonification capacity was increased by applying low C/N ratio broiler litter at 1–8% (w/w). Soil pH was increased using lime at 0.5–1% (w/w). This reduced fungi (Fusarium oxysporum f. sp. dianthi and Sclerotium rolfsii) and root-knot nematode (Meloidogyne javanica) in lab tests below detection. In a commercial greenhouse, broiler litter (25 Mg ha−1) and lime (12.5 Mg ha−1) addition to soil in combination with solarization significantly reduced M. javanica induced root galling of tomato test plants from 47% in the control plots (solarization only) to 7% in treated plots. Root galling index of pepper plants, measured 178 days after planting in the treated and control plots, were 0.8 and 1.5, respectively, which was statistically significantly different. However, the numbers of nematode juveniles in the root zone soil counted 83 and 127 days after pepper planting were not significantly different between treatments. Pepper fruit yield was not different between treatments. Soil disinfection and curing was completed within one month, and by the time of bell-pepper planting the pH and ammonia values were normal

    A Minimum-Labeling Approach for Reconstructing Protein Networks across Multiple Conditions

    Get PDF
    The sheer amounts of biological data that are generated in recent years have driven the development of network analysis tools to facilitate the interpretation and representation of these data. A fundamental challenge in this domain is the reconstruction of a protein-protein subnetwork that underlies a process of interest from a genome-wide screen of associated genes. Despite intense work in this area, current algorithmic approaches are largely limited to analyzing a single screen and are, thus, unable to account for information on condition-specific genes, or reveal the dynamics (over time or condition) of the process in question. Here we propose a novel formulation for network reconstruction from multiple-condition data and devise an efficient integer program solution for it. We apply our algorithm to analyze the response to influenza infection in humans over time as well as to analyze a pair of ER export related screens in humans. By comparing to an extant, single-condition tool we demonstrate the power of our new approach in integrating data from multiple conditions in a compact and coherent manner, capturing the dynamics of the underlying processes.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Susceptibility Amplitude Ratios Near a Lifshitz Point

    Full text link
    The susceptibility amplitude ratio in the neighborhood of a uniaxial Lifshitz point is calculated at one-loop level using field-theoretic and ϵL\epsilon_{L}-expansion methods. We use the Schwinger parametrization of the propagator in order to split the quadratic and quartic part of the momenta, as well as a new special symmetry point suitable for renormalization purposes. For a cubic lattice (d = 3), we find the result C+C=3.85\frac{C_{+}}{C_{-}} = 3.85.Comment: 7 pages, late

    Algebraic analysis of quantum search with pure and mixed states

    Full text link
    An algebraic analysis of Grover's quantum search algorithm is presented for the case in which the initial state is an arbitrary pure quantum state of n qubits. This approach reveals the geometrical structure of the quantum search process, which turns out to be confined to a four-dimensional subspace of the Hilbert space. This work unifies and generalizes earlier results on the time evolution of the amplitudes during the quantum search, the optimal number of iterations and the success probability. Furthermore, it enables a direct generalization to the case in which the initial state is a mixed state, providing an exact formula for the success probability.Comment: 13 page
    corecore